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Abstract. A new and rather trivial model is suggested with mechanism that implies simultaneous violation
of the zeroth and the second laws of thermodynamics. Mathematically rigorous quantum theory reduces
to a trivial application of the Golden rule formula. It yields exciton on-energy-shell diffusion caused by
bath-nonassisted excitation hopping between tails of different exciton site levels ε1 < ε2 broadened by
bath-assisted finite life-time effects. The elastic character of the hopping implies 1↔ 2-symmetric transfer
rate W . Thus the net diffusion exciton flow W (P1 − P2) and also, as argued, the net energy flow are
possible due to different near-to-equilibrium exciton populations P1 > P2. As the sites are provided with
two different baths, the population imbalance and the flows survive even for slightly different local bath
temperatures T1 < T2 < T1ε2/ε1. Thus spontaneous exciton and also energy flows against temperature
step become possible, in contradiction with the Clausius form of the second law. Violations of both the
laws disappear in the high-temperature, i.e. classical limit.

PACS. 05.30.-d Quantum statistical mechanics – 05.70.-a Thermodynamics – 44.90.+c Other topics in
heat transfer

1 Introduction

Phenomenological arguments against general validity of
standard statistical thermodynamics and call for inclusion
of cooperative, selforganization and similar complicated
phenomena even in absence of, e.g., external flows and
far from equilibrium exist already for a long time. Since
early nineties, one can find them especially in theory of
electron-transfer chemical reactions where, in connection
with their phenomenological non-linear description, inclu-
sion of such effects seems to be indispensable [1]. Neces-
sity of their inclusion follows also from detailed analysis
of what is known in molecular biology about how indi-
vidual molecules (molecular machines) work in living or-
ganisms [2]. Selforganization is usually believed to be a
domain of nonlinear theories. In 1996, the first Hamilto-
nian linear quantum model was suggested that can lead
to a selforganized state upon thermalization in a bath
even when no external flows exist and, simultaneously, this
state is energetically disadvantageous [3,4]. Recent analy-
sis has revealed that the former non-linear phenomenolog-
ical and the latter linear first-principle type of reasoning
strive in the same direction and can be easily united [5].
The reader is referred to [6–8] or also to [5] for previous
models (extending also reasoning of [3,4]) where the co-
operative and selforganizational tendencies in such models
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can be shown to provide a basis and unique possibility of
violating even the second law of thermodynamics.

Some of such models allow a mathematically rigorous
treatment throughout all the calculations ([6] is perhaps
the first one of them). However, for technical reasons,
just one-step processes have been treated so far. Only
very recently, first in 1998, the first rigorously solvable
quantum model working cyclically as a perpetuum mo-
bile of the second kind (i.e. converting heat from a single
bath into, this time, a usable work without compensa-
tion) and violating thus, for the first time explicitly, the
Thomson formulation of the second law of thermodynam-
ics [9] was reported [10–12]. In 1999 and 2000, also other
groups arrived, independently and for other situations, at
the same conclusion challenging universal validity of the
second law [13–15]. From them, in particular paper [14]
by Allahverdyan and Nieuwenhuizen inspired a public re-
sponse [16]. Completely different mechanism (connected
with dynamically maintained steady-state pressure gra-
dients in rarefied gases) potentially allowing violation of
the second law was recently suggested by Sheehan – com-
pare, in connection with previous paper [17], the dis-
cussion in [18,19]. Another and even rather positively
experimentally tested system was suggested by Sheehan
already in 1994 [20–22]. Because of complicated nature of
the problem as well as owing to 150 years of tradition-
ally presumed universal validity of thermodynamic prin-
ciples, it is likely that irrespective of final result of the
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above counter-examples, the problem of potential viola-
tion of thermodynamic principles will remain topical for
many years to come. A comment is only worth mentioning
here that the above models of the present group always
work from strong correlations (entanglement) among par-
ticles and/or competing and mutually interfering reaction
(transfer) channels. Thus, like also in [13,14], the mecha-
nisms discussed are appreciably different from those based
on, e.g., the Feynman, Ratchet and Pawl systems [23,24].
It is most likely that such ratchet-like systems (that would
transform the thermal noise into one-directional linear or
rotational motion) rather fail in experiment once they are
devised to violate the second law [24], irrespective of pre-
vious opposite expectations but fully in accordance with
the Feynman original analysis [23].

The above models of the present group (usually de-
scribed as isothermal Maxwell demon models because of
dynamic opening and closing ‘gates’, i.e. reaction chan-
nels) are in fact so far sufficiently complicated. Moreover,
their classical counterparts do not work. All this is why
they can and really do, at the first inspection, naturally
induce fully comprehensible prejudice, mistrust, or misun-
derstandings. To this mistrust, also the fact contributes
that the principles on which their activity relies remind
of the original Maxwell demon [25] (opening and clos-
ing a gate after checking state or performance of previous
steps and thus deciding about next elementary steps in,
e.g., particle transfer). The idea of Maxwell demon was,
however, often and in detail analyzed during the last 130
years [26,27]. Result of the analysis was usually negative
but it well applies to just classical models. In this connec-
tion, it is worth mentioning that all models [3–8,10–14]
really cease to work in the classical (high-temperature)
limit. On the other hand, this analysis does not regard
purely quantum models working on, e.g., principles known
from nature, in particular from the contemporary molec-
ular biology (interplay between particle transfer and ac-
companying topological reconstruction of the particle sur-
roundings [2]) built in [3–8,10–12].

The situation seems to be even more serious as the
quantum model of the isothermal Maxwell demon of [3,4]
(model of uni-directional isothermal particle transfer even
against potential forces) allows a simple generalization to
a greater set of sites available to a greater number of par-
ticles. This analysis then implies that in a stationary state
(equilibrium one in the sense of thermodynamics), chem-
ical potentials of one sort of particles in two subsystems
interconnected by sophisticated (e.g. molecular) bridges
could become even different [28]. This questions universal
validity of another basic principle of the statistical thermo-
dynamics [29]. In order to make the situation simpler, we
have here rebuilt the model of [3,4] to describe transfer of
excitons (i.e. excitation energy) and analyzed principles of
its work in connection with those of the original model. It
appeared that the rebuilt model could be appreciably sim-
plified to such an extent that it becomes fully independent.
No possibility is seen to simplify it further and to preserve,
simultaneously, the unusual phenomena investigated. The
above elementary steps of ‘checking performance of pre-

vious steps’ and ‘opening or closing the gate according
to the result of the check’, so typical of the Maxwell de-
mon – like models, completely disappeared. What, on the
other hand, remained is the existence of quantum interfer-
ence of different reaction (transfer etc) channels. Except
for a small (rather physical than technical) modification
connected with presumed initial conditions and existence
of two thermodynamic baths, the form of the model is
fully standard. Without this modification, its solution is
known, has been obtained many times and in many differ-
ent ways, and is correspondingly believed to be well un-
derstood. Also the physics coming out of the complicated
mathematics is surprisingly simple: Exciton diffusion due
to elastic (on-energy-shell) hopping among tails of exciton
levels and to sites with less exciton population. Simplicity
of the model and many times verified applicability of the
really standard technical ‘weaponry’ applied to it is what
may then, hopefully, change the so far reserved attitude
of general public to the above provoking ideas question-
ing, on grounds of the quantum theory of open systems,
universal validity of principles of the statistical thermody-
namics. These questioned principles include now, in the
light of the present results, not only the second but, as
argued below, also the zeroth law of thermodynamics.

2 Model

System of a few levels interacting with a thermodynamic
bath is a standard quantum problem. We shall use it also
here. Specifically, here, we assume three levels, one ground
and two excited ones, and refer to the excited levels as
those with a Frenkel exciton placed either on site 1 or
site 2. These sites might be, e.g., two different molecules
or local centres in, possibly, two different but adjacent
solids representing two different electron subsystems. As
it is easy to verify, it is for our problem here irrelevant
whether we include or ignore the fourth level correspond-
ing to both molecules (molecular systems, local centres)
excited. For technical simplicity, we choose the latter al-
ternative. Corrections owing to the (here ignored) two-
exciton states are, in, e.g., the excited state occupation
probabilities and for small 1 ↔ 2 exciton transfer rates,
∝ exp{−β(ε1+ε2)} where εj, j = 1, 2 are the local exciton
energies. Thus, they can be easily identified.

The exciton residing possibly at sites 1 or 2 (if not
lacking at all for some time owing to finite life-time effects
admitted here) can in principle be transferred between the
sites (subsystems) either coherently or incoherently. Here,
we choose the first alternative, designating the hopping
(resonance or transfer) integral as J . Finally, we complete
the model by adding a bath interacting with the system.
The tricky feature whose real sense will be seen only below
is that we ascribe to each subsystem (designated as I with
site 1 and II with site 2) its own thermodynamic bath
represented by harmonic oscillators (phonons). Because
we assume that initially, both the baths have a canonical
distribution with possibly equal temperatures, this step
is in such a case isomorphic to assuming that the exci-
ton at site 1 or 2 interacts respectively with, e.g., just
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even or odd modes of a single bath. Technically, the next
step is not relevant but physically, it is important to as-
sume that these two baths are in a way separated as we
shall discuss the energy (heat) flow from bath I to II and
vice versa, and we want the exciton mediated channel to
be the only one making the heat transfer possible. Adding
that the exciton-phonon coupling (with coupling constants
gκ and Gκ) leading to the above exciton finite life-time
effects (i.e. non-preserving the number of excitons) is as-
sumed linear in the phonon creation (b†jκ) and annihilation
(bjκ, j = 1 and 2) operators, one can directly write the
Hamiltonian as

H = HI +HII + J(a†1a2 + a†2a1),

HI = ε1a
†
1a1 +

∑
κ

~ωκb†1κb1κ

+
1√
N

∑
κ

gκ~ωκ
(
a1 + a†1

)(
b1κ + b†1κ

)
,

HII = ε2a
†
2a2 +

∑
κ

~ωκb†2κb2κ

+
1√
N

∑
κ

Gκ~ωκ
(
a2 + a†2

)(
b2κ + b†2κ

)
. (1)

The exciton creation (annihilation) operators are assumed
to fulfil the Pauli relations

{a1, a
†
1} = {a2, a

†
2} = 1, [a1, a

†
2] = 0,

{a1, a1} = {a2, a2} = [a1, a2] = 0 etc. (2)

Here, {. . . , . . . } and [. . . , . . . ] are the usual anti- and com-
mutators. The phonon frequencies ωκ are, for simplicity,
assumed the same for both the baths. Finally, εj, j = 1, 2
are the exciton energies while N is the number of the
phonon modes (finite before taking the baths thermody-
namic limit) in each bath separately. Technically, the ex-
istence of two separated and uncorrelated baths, each of
them interacting with just one exciton level, makes also
the form of our matrices below simpler. One should add
here that any two-level system can be represented as a 1

2 -
spin, i.e. also (1) may be rewritten in terms of two 1

2 -spins
s1 and s2 interacting here with two separate baths. Unfor-
tunately, for such spin-boson systems [16,30,31], no gen-
eral exact solution exists. Moreover, the quantity we are
here interested in (e.g. I ∝ =mρ12 = =m〈s+

2 s
−
1 〉 in (26)

below) does not belong to those sufficiently investigated
in our specific stationary but non-equilibrium (both from
the point of view of our system without baths only) time-
regime. That is why we start here from the very beginning.

We now want to proceed by writing down a closed set
of equations for the exciton density matrix only, project-
ing off the information about baths. There are several well
known ways leading finally to the same result. In order
to be specific, we choose time-convolutionless Generalized

master equations [32–36] with the Argyres-Kelley projec-
tor [37,38]. Practical application of the resulting equa-
tions then requires approximations (e.g. expansions) upon
calculation of coefficients in the equations that can be
avoided by application of scaling arguments. The method
is well developed and standard now. Describing the for-
mal apparatus, we must be, however, more specific as we
are now going to deviate from a standard weak-coupling
approach. This is necessary here because of necessity to
describe properly interplay between/among several com-
peting processes.

The weak coupling theory was made mathematically
perfect by Davies who properly applied the scaling idea
of van Hove [39,40]. It is funny to realize that, at least
for systems of finite number of levels, the mathematical
prescription how to calculate properly the weak-coupling
dynamics as provided by the Davies theory is not unique.
For that, compare Theorem 1.4 of [40] which establishes
full uniqueness just in the full Van Hove limit (see (3) be-
low) but not for arbitrarily weak though finite coupling
strengths as it corresponds to reality. Irrespective of it,
because of its mathematically rigorous form, this theory
(really rigorous in its region of validity) so influenced the-
oreticians that many of them now consider the weak cou-
pling language as universal. This is, of course, uninten-
tional negative consequence of the mathematical precision
of the Davies theory. So, it is also (and even more than
above) funny to observe that this theory fails to describe,
e.g., the physical regime we are here interested in. This
is owing to the overestimation, in the Davies (or, more
generally, weak coupling) theory, of the role of in-phasing
(that is, in our case, owing to, e.g., the coherent exciton
transfer 1↔ 2) as compared to the standard dephasing1.
The latter dephasing process is, in our case, simply due
to the exciton (electron) coupling to the bath. Let us be
even more specific:

The standard weak-coupling theory is based on the no-
tion of a small parameter, say g, of the coupling of the sys-
tem to the bath. This means that g would be a joint small
parameter of the last terms on the right hand sides of HI

and HII in (1) only. Then a new unit of time, say τ = t/t′

is chosen and we work, instead of the true physical time t,
in terms of the dimensionless time t′. Avoiding here tech-
nical details how to avoid Poincaré cycles by performing
first the thermodynamic limit of the bath [41], the result
is that finally, the proper weak-coupling equations for the
exciton density matrix are obtained (otherwise as below)
by taking the combined limiting Van Hove procedure

g → 0, τ → +∞, g2τ = const. (3)

Omitting at this moment also less important mathemati-
cal details (see [40,42]), the statement is that the resulting
equations then describe properly the time development of
the system, in terms of the new time t′, to its canoni-
cal state corresponding to the (initial) temperature of the

1 This overestimation is not owing to any formal error, it is
because of the very form of the presumed Van Hove scaling. In
Nature, there is, e.g., no possibility to scale coupling constants
as they are real constants, not variables.
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bath. Because of the limit g → 0 incorporated into (3)
and because the coherent (transfer or hopping) integrals
responsible for the in-phasing are kept finite during this
limit, the role of the dephasing processes in competing the
in-phasing ones is fully suppressed. This is why the corre-
sponding asymptotic, i.e. canonical density matrix is then
diagonal in the basis of the eigenstates of the Hamiltonian
of the system HS alone. In other words, this is why the
relaxation goes to eigenstates of HS.

In order to incorporate the above and in Nature really
existing competition between dephasing and in-phasing
processes, we shall proceed in almost the same way ex-
cept for one point: We take g as a small parameter of
not only the system coupling to the bath. We also assume
that J ∝ g2. The resulting limiting procedure is thus not
that of the weak coupling but that of, rather, slow transfer
processes. Concerning the relative strength of the 1 ↔ 2
transfer and relaxation owing to the coupling to the bath,
it might be, in such a scheme and for a general situation,
still arbitrary. Here, we shall, however, assume that the
latter coupling is rather intermediate or even strong as
compared to the coherent 1↔ 2 transfer of the exciton in
the sense that the dephasing is either comparable to, or
even dominates over in-phasing. (Concerning the words
‘...dominates over...’ remember, that in the situation of
the weak coupling case, the in-phasing is, in the limiting
sense of (3), infinitely stronger than the dephasing. Here,
on the contrary, we admit in our case of the intermedi-
ate or strong coupling that the dephasing could be even
dominating over the in-phasing but, figuratively speaking,
their ratio remains always finite though perhaps arbitrar-
ily large.) This causes remarkable differences in structure
of the equations we aim at as well as in the physical con-
clusions. In particular, we then get that the relaxation
does not go (in the sense of diagonalizing the asymptotic
density matrix) to the eigenstates of the Hamiltonian of
the system. To what state (i.e. to what exciton density
matrix) the relaxation then goes we shall see later.

Technically, the method of deriving the closed set of
equations for the exciton density matrix proceeds in the
following steps:

• We introduce the density matrix of the ‘sys-
tem+bath(s)’ complex in the ‘interaction’ picture as

ρ̃(t) = exp{iL0 t}ρS+B(t). (4)

Here ρS+B(t) is the density matrix of the system and
the bath in the Schrödinger picture and the Liou-
villean L0 . . . = [H0, . . . ]/~ where, however, H0 =∑2
j=1[εja

†
jaj+

∑
κ ~ωκb

†
jκbjκ]. In other words, the hop-

ping term J(a†1a2 + a†2a1) is now not included in H0.
This is unlike the scaling inherent to the weak-coupling
case (3).
• We apply, e.g., the Fuliński and Kramarczyk iden-

tity [32,33], or its more famous form by Shibata,

Hashitsume et al. [34,35]

d
dt
P ρ̃(t) = −iPL(t)

[
1 + i

∫ t

0

exp←

×
{
− i
∫ t

τ1

(1−P)L(τ2) dτ2

}

×(1−P)L(τ1) exp→

{
i

∫ t

τ1

L(τ2) dτ2

}
dτ1

]−1

×
[
exp←

{
−i
∫ t

0

(1−P)}L(τ) dτ
}

(1−P)ρ(0)+P ρ̃(t)
]
.

(5)

(For equivalence of (5) with [32,33] see [36].) Here P
is the so called Argyres-Kelley projector [37,38]

P . . . = ρB TrB(. . . ), (6)

L(t) . . . = exp{iL0 t}
1
~

[H̃, . . . ] exp{−iL0 t}, (7)

and

H̃ = J
(
a†1a2 + a†2a1

)
+

1√
N

∑
κ

~ωκ
[
gκ
(
a1 + a†1

)
×
(
b1κ + b†1κ

)
+Gκ

(
a2 + a†2

)(
b2κ + b†2κ

)]
. (8)

• Assume, for simplicity, initially factorizable density
matrix of the exciton and bath and identify ρB with
the initial density matrix of the bath.
• Perform the above scaling (including transition to new

time t′ – we shall, however, continue writing t) with
also J ∝ g2,
• Return back from the above ‘interaction’ picture to the

Schrödinger picture.

(Details of this procedure may be found, for similar mod-
els, elsewhere – see, e.g., [43] for a method fully following
the Davies approach [40,42].) Then, after some straight-
forward algebra, the required set of equations for the den-
sity matrix of the exciton only (designated as ρ(t)), that
is exact in the sense of the above scaling procedure, reads

d
dt


ρ00(t)
ρ11(t)
ρ22(t)
ρ12(t)
ρ21(t)

 =
(
A B
C D

)
·


ρ00(t)
ρ11(t)
ρ22(t)
ρ12(t)
ρ21(t)

 . (9)

Here the blocks

See equation (10) in next page.

From the whole set of 9 equations for elements ρij(t),
i, j = 0, 1 or 2, we have in (9) omitted those ones that
are separated (the whole set factorizes) and are not im-
portant below. Index 0 corresponds to the unexcited state
where there is no exciton in the system. As for, e.g., the
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A =

0
B@
−γ↑ − Γ↑ γ↓ Γ↓

γ↑ −γ↓ 0

Γ↑ 0 −Γ↓

1
CA , B =

0
B@

0 0

iJ/~ −iJ/~

−iJ/~ iJ/~

1
CA , C =

 
0 iJ/~ −iJ/~

0 −iJ/~ iJ/~

!
,

D =

 
− 1

2
(γ↓ + Γ↓) + i(ε2 − ε1)/~ 0

0 − 1
2
(γ↓ + Γ↓)− i(ε2 − ε1)/~

!
. (10)

zero elements in the D matrix, these are owing (and corre-
spond) to the above stressed importance of the existence
of two baths. This also makes a difference between two
Davies schemes (see [40]) irrelevant here. The following
notation has been used:

γ↑ =
2π
~

1
N

∑
κ

(gκ~ωκ)2 1
exp(β1~ωκ)− 1

δ(~ωκ − ε1),

γ↓ =
2π
~

1
N

∑
κ

(gκ~ωκ)2

[
1+

1
exp(β1~ωκ)− 1

]
δ(~ωκ−ε1),

Γ↑ =
2π
~

1
N

∑
κ

(Gκ~ωκ)2 1
exp(β2~ωκ)− 1

δ(~ωκ − ε2),

Γ↓ =
2π
~

1
N

∑
κ

(Gκ~ωκ)2

[
1+

1
exp(β2~ωκ)−1

]
δ(~ωκ−ε2).

(11)

Implicitly, we assume everywhere the thermodynamic
limit of the bath(s) to be already performed. As for β1

and β2, notice that we have assumed the bath to consist
of two (sub-)baths designated as 1 and 2, each of them
connected with its own subsystem I or II (forming inher-
ent part thereof). In order to get rid of the inhomogeneous
initial condition terms (otherwise resulting in the set (9)),
we have assumed that the bath is initially statistically
independent of the system. We impose further condition
here: As the two sub-baths do not directly interact, we
ascribe both of them initial canonical distributions with
presumably different initial temperatures T1 and T2. Then
βj = 1/(kBTj), j = 1, 2. All derivation here and below
applies for even T1 6= T2. Unless the opposite is men-
tioned explicitly below, however, we can for simplicity as-
sume the two initial temperatures of the baths equal, i.e.
β1 = β2 ≡ β = 1/(kBT ). Then only one type of the Bose-
Einstein distribution nB(z) = [exp(βz)−1]−1 for phonons
enters the above formulae. Worth mentioning here is also
the fact that all the γ’s and Γ ’s in (11) result as standard
Golden Rule transition rates (fulfilling the usual detailed
balance conditions) between states of a localized and ab-
sent exciton. No J appears in these formulae. Also this is
one of consequences of our above scaling procedure that
leads to description of relaxation not in the weak-coupling
but rather intermediate or strong coupling regimes (com-
parable dephasing which is due to the coupling to the
bath, and in-phasing which is owing to the above J-term
(hopping term)). There is no approximation here.

3 Relation to the weak-coupling limit
dynamics

The weak-coupling limit dynamics is best described in
terms of eigenstates of the Hamiltonian of the system split
off the bath

HS =
2∑
j=1

εja
†
jaj + J(a†1a2 + a†2a1). (12)

In our case, one such an eigenstate is known, it is the
ground state |0〉 of the electronic system (no exciton in
the system). Assume henceforth that ε1 6= ε2. Then the
next two eigenstates states read

|+〉 = χ|1〉 − φ|2〉, |−〉 = φ|1〉+ χ|2〉 (13)

where

φ =
2Jsign(ε2−ε1)√

2
√

(ε2−ε1)2+4J2
[
|ε2−ε1|+

√
(ε2−ε1)2 + 4J2

] ,
χ =

√
1− φ2

=
|ε2−ε1|+

√
(ε2−ε1)2+4J2√

2
√

(ε2−ε1)2+4J2
[
|ε2−ε1|+

√
(ε2−ε1)2+4J2

] ·
(14)

The corresponding eigenenergies (unperturbed by the cou-
pling to the bath) read

E± =
1
2

[ε1 + ε2 ∓ sign(ε2 − ε1)
√

(ε2 − ε1)2 + 4J2]. (15)

Clearly |+〉 → |1〉 and |−〉 → |2〉 when J → 0. In the
basis of states |0〉, |+〉, and |−〉, the rigorous weak-coupling
dynamics [39,40] as obtained by scaling (3) of the exciton
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density matrix with the above initial condition reads

d
dt



ρ00(t)
ρ++(t)
ρ−−(t)
ρ0+(t)
ρ+0(t)
ρ0−(t)
ρ−0(t)
ρ+−(t)
ρ−+(t)


=

 . . . . . . . . .
. . . EN −DIF . . .
. . . . . . . . .

 ·



ρ00(t)
ρ++(t)
ρ−−(t)
ρ0+(t)
ρ+0(t)
ρ0−(t)
ρ−0(t)
ρ+−(t)
ρ−+(t)



+



−γ+0−Γ−0 γ0+ Γ0− 0 0 0 0 0 0
γ+0 −γ0+ 0 0 0 0 0 0 0
Γ−0 0 −Γ0− 0 0 0 0 0 0

0 0 0 k p 0 0 0 0
0 0 0 p k∗ 0 0 0 0
0 0 0 0 0 l q 0 0
0 0 0 0 0 q l∗ 0 0
0 0 0 0 0 0 0 m 0
0 0 0 0 0 0 0 0 m∗


·



ρ00(t)
ρ++(t)
ρ−−(t)
ρ0+(t)
ρ+0(t)
ρ0−(t)
ρ−0(t)
ρ+−(t)
ρ−+(t)


.

(16)

Here

γ+0 =
2π
~

1
N

∑
κ

(
χ2g2

κ + φ2G2
κ

)
(~ωκ)2nB(~ωκ)

× δ(E+ − ~ωκ),

γ0+ =
2π
~

1
N

∑
κ

(
χ2g2

κ + φ2G2
κ

)
(~ωκ)2[1 + nB(~ωκ)]

× δ(E+ − ~ωκ),

Γ−0 =
2π
~

1
N

∑
κ

(
φ2g2

κ + χ2G2
κ

)
(~ωκ)2nB(~ωκ)

× δ(E− − ~ωκ),

Γ0− =
2π
~

1
N

∑
κ

(
φ2g2

κ + χ2G2
κ

)
(~ωκ)2

× [1 + nB(~ωκ)]δ(E− − ~ωκ), (17)

are the Golden Rule transfer rates between eigenstates
of the unperturbed Hamiltonian of the system HS;
clearly, e.g. γ+0 → γ↑ when J → 0 etc. Further, . . . . . . . . .
. . . EN −DIF . . .
. . . . . . . . .

 is the 9× 9 diagonal matrix with

diagonal elements 0, 0, 0, i
~E+, − i

~E+, i
~E−, − i

~E−,
i
~ (E− −E+), and i

~(E+ −E−). Finally,

k = −0.5(γ+0+γ0+ + Γ−0), l = −0.5(Γ−0 + Γ0−+γ+0),
m = −0.5(γ0+ + Γ0−), p = 0.5(γ+0 + γ0+),

q = 0.5(Γ0− + Γ−0). (18)

Topologically, the weak-coupling relaxation matrix (the
square matrix in the second term on the right hand side

of (16)) resembles that in our intermediate or strong-
coupling case (9–10). These relaxation matrices are writ-
ten down in different bases, however, and in these bases,
they have a simple, standard and easily understandable
form. Difference between the ‘extended’ basis |0〉, |+〉,
and |−〉 and the ‘localized’ one |0〉, |1〉, and |2〉 is why the
free-motion terms (the first terms on the right hand side
of (16) and (9)) formally differ. Coincidence of the free-
motion terms is of course complete once they are brought
to the same (either localized or extended) basis. This is,
on the other hand, unlike the relaxation matrix. If we set
J → 0 in all the coefficients in the relaxation matrix in
the extended basis in the second term in (16), we do not
reproduce the relaxation matrix of (9) in this basis. In-
stead, we get, in this way, the relaxation matrix of (9) as
it is written down in (9), i.e. in the localized basis. The
point is that
• in the scaling (3) underlying the weak-coupling regime,

the in-phasing (which is due to J that is kept constant
during the scaling) is automatically, as a consequence
of (3), presumed dominating over dephasing processes.
Nothing is changed on this feature even if we addi-
tionally take J arbitrarily small. That is why the free-
motion term is diagonal in the extended basis and the
relaxation term describes relaxation in the same basis,
i.e. that of eigenstates of HS with J 6= 0. This relax-
ation including dephasing is, owing to the form of (3),
to be understood as (in the limiting sense) infinitely
slow as compared to the in-phasing processes. On the
other hand,
• with our scaling

g → 0, J → 0, τ → +∞, g2τ = const,
g2

J
= const.,

(19)

also J is scaled. Hence, as we are allowed, in such a
scaling, to keep just second order (in g) processes, we
must set J = 0 inside all the relaxation superopera-
tor (correction to PL(t)Pρ(t) on the right hand side
of (5)) as the latter is already ∝ g2 owing to its pro-
portionality to the second power of the coupling to
the bath). That is why the relaxation term in (9) de-
scribes relaxation to eigenstates of HS|J=0, i.e. in the
localized basis. J must be, however, kept nonzero in
the free-motion term. That is why we get a proper
competition between free-motion (no transitions in the
extended basis, i.e. between eigenstates of HS|J 6=0) re-
flecting in-phasing owing to term ∝ J in (1), and re-
laxation going between eigenstates of HS|J=0, i.e. in
the localized basis.

The situation in our intermediate or strong coupling case
connected with scaling (19) thus reminds a bit of the Hub-
bard model when the band and site-local interaction terms
are diagonal just in the extended and local bases, respec-
tively. In our case, full equivalence between (16) and (9)
appears only in the extreme case of J taken as zero from
the very beginning, in both the free-motion and relaxation
terms. This is because then the extended and localized
bases coincide.
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4 Particle and energy flows

Let us return to our above scheme of the slow exciton dy-
namics as described by (9–10) and let us first discuss solu-
tion for the case of zero J (for this particular case, corre-
spondence with the weak-coupling approach as above can
be found quite easily). It is easy to verify that the station-
ary (and in this particular case definitely also equilibrium)
solution to (9) reads

ρ00 ≡ ρ00(t→ +∞) = 1− ρ11 − ρ22, ρ11 =
exp(−βε1)

Z
,

ρ22 =
exp(−βε2)

Z
, Z = 1 + exp(−βε1) + exp(−βε2).

(20)

As for stationary values of site off-diagonal elements of ρ,
they turn to zero. So as to derive (20), we have used
the detailed balance relations γ↑/γ↓ = exp(−βε1) and
Γ↑/Γ↓ = exp(−βε2). Formulae (20) are still in full agree-
ment with the equilibrium statistical mechanics, in par-
ticular the canonical distribution. In order to see that,
let us realize that we have omitted, for purely techni-
cal reasons, the two-exciton state with both levels (1
and 2) occupied by excitons. This means errors of the
order ∝ exp(−β(ε1 + ε2)). Within this accuracy, we can
well approximate, e.g., the stationary value ρ11 as ρ11 ≈

exp(−βε1)
1+exp(−βε1) what is the canonical equilibrium probability
P1 of finding the site 1 occupied by the exciton, as pre-
scribed by the equilibrium statistical mechanics. Refrain-
ing, on the other hand, for a while from the above omission
of the two-exciton state and designating the two-exciton
state as state 3, we might reconsider the problem on the
more general level. This would yield the stationary value
ρ11 = exp(−βε1)/Z ′ and ρ33 = exp(−β(ε1 +ε2))/Z ′ where
Z ′ = Z + exp(−β(ε1 + ε2)). From that, the probability of
finding the exciton at site 1 irrespective of the occupa-
tion of site 2 results as P1 ≡ ρ11 + ρ33 = 1

1+exp(βε1)
2, in

a full correspondence with the above reasoning based on
discussion of accuracy of our treatment.

Interesting and important for what follows below is
also the dynamics of occupation of site 1. As we still keep
J = 0, we may for this purpose ignore the state 2 at all.
Doing so, we shall for a while completely neglect γ↑ as
compared to γ↓3. Then the dynamics (time dependence)
of probability of finding the exciton at site 1 reads

P1(t) = P1(t = 0)e−γ↓t. (21)

This corresponds to the probability amplitude of find-
ing the exciton at site 1 in form of e−iεt/~−γ↓t/2 whose
Fourier transform reads as Lorentzian 1

π
γ↓/2

[ω−ε1/~]2+[γ↓/2]2 .
This indicates that the exciton level ε1 (and similarly for

2 This is the standard Fermi-Dirac distribution for excitons
that behave as paulions, i.e on-site fermions, with zero value
of their chemical potential.

3 It is always γ↑/γ↓ = exp(−βε1) (the detailed balance con-
dition). This ratio is definitely� 1 for kBT � ε1. On the other
hand, except in (21), this condition is not used below.

the level ε2) is broadened as a Lorentzian with the half-
widthγ↓/2 (Γ↓/2). This is what we shall need below.

All this is very reasonable and known, in different con-
text, for already many years. In what follows, we return
to a general situation. We shall argue now that the matter
will drastically change once we put J nonzero though there
is no non-analycity at J = 0 here. To be more concrete,
we are now going to argue that under the above defined
conditions and for, e.g., equal initial temperatures of the
baths T1 = T2 = T , there will be a permanent exciton
(and also energy) J-dependent flow between sites 1 and 2.
Because of our joining these sites with different and mu-
tually non-interacting baths, this will imply also existence
of the energy flow also between our whole subsystems I
and II.

This prediction is perhaps shocking for standardly
thinking physicists. In order to make the situation physi-
cally more clear, let us admit two important things right
here:

• The weak-coupling theory does not yield the persistent
nonzero flows.
• Application of the canonical distribution to the whole

system (consisting of two subsystems, each of them
having its own bath and electronic, i.e., exciton levels)
also yields that these flows are in average zero.

The counter-arguments against such an easy beating off
our type of reasoning and results are, however, as follows:

• The weak coupling theory has even potentially no pos-
sibility to yield such flows at all. So, it cannot serve
as an arbitrator. The point is that such flows, as
shown below, need a sufficiently strong dephasing (as
compared with in-phasing processes) to broaden the
energy levels ε1 and ε2 (as we shall see below, the
transfer is between tails of these levels). The very def-
inition of the weak-coupling approach (see (3) above)
is based on the Van Hove limit leading to a negligible
role of the dephasing (as compared to the in-phasing),
i.e. with negligible level broadening. Thus, such ap-
proach is in principle unable to model the situation
with flows we speak about4. Under the condition of
the dominating in-phasing (over the dephasing as in
the weak-coupling regime), the exciton at sites 1 and 2
also becomes shared. In other words, a special type of
a covalent bonding appears between the sites which (as
also found in other situations) prevents such flows.
• If we are really right in our prediction that, in the

thermodynamic limit, there is a persistent flow be-
tween sites 1 and 2, i.e. between systems I and II,
application of the canonical distribution is unjustified.
The point is that the canonical distribution is based
on maximizing entropy under solely two constraints:
Normalization condition (Tr ρ = 1) and mean energy

4 Notice also that, for, e.g., negligible relativistic corrections
and in absence of external magnetic field, the canonical density
matrix is real in our local basis |1〉 and |2〉. Hence, formula (26)
below yields zero flow between sites 1 and 2 in the canoni-
cal equilibrium, irrespective of the Golden-Rule-type predic-
tion (31).
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conservation (Tr(Hρ) = Ē = const.). If we are right,
then at least the third constraint Tr(Îρ) = const.
(Î being the flow operator) should be added what
makes the usual canonical distribution improper. Also
other approaches used to justify the canonical distri-
bution always use, explicitly or implicitly, the ad hoc
assumption of non-existence of other persistent quan-
tities than energy. So, if we are really right in our ar-
guments here, then, definitely, nor the canonical dis-
tribution can be used as an arbiter.

In order to confirm the existence of the stationary
flows, let us start our reasoning here by deriving a suf-
ficiently reliable form of the exciton flow formula. From
our Hamiltonian (1) and the Liouville equation, we get
that

− d
dt
〈a†1a1〉 =

i
~
〈[a†1a1,H]〉

=
2J
~
=m〈a†2a1〉+

2√
N

∑
κ

gκωκ=m〈b†1κa1〉 · (22)

The last mean value can be calculated, using principle of
the adiabatic switching on the interactions, as

δ〈b†1κa1〉 =
d
dt
〈b†1κa1〉 = − i

~
〈[b†1κa1,H]〉, δ → 0 + . (23)

Here, terms containing J should already be omitted if we
work to the second order in our small parameter g only
(remember that J ∝ g2 – see (19)). Thus, within this
accuracy,

〈b†1κa1〉 ≈
1

~ωκ − ε1 + i~δ
1√
N
gκ~ωκ

×
{
nB(~ωκ)[1− 〈a†1a1〉]− [1 + nB(~ωκ)]〈a†1a1〉

}
· (24)

So, because 〈a†nam〉 = ρmn, (22) reads within the required
accuracy as

− d
dt
〈a†1a1〉 ≈

2J
~
=mρ12 − ρ00γ↑ + ρ11γ↓. (25)

As the last two terms express the exciton number imbal-
ancing owing to transfers 1 ↔ 0, the proper formula for
the real 1 ↔ 2 flow is connected with the first term on
the right hand side of (25). Thus, the 1↔ 2 exciton flow
(taken as positive if flowing from 1 to 2) reads

I =
2J
~
=mρ12. (26)

The fact that I is determined by the (imaginary part of
the) site off-diagonal elements of the particle density ma-
trix follows already from the elementary quantum mechan-
ics ((26) also has a direct connection to standard quantum
mechanical formula I ∝ Ψ∗ · ∇Ψ −∇Ψ∗ · Ψ).

The long-time (stationary) value of the ρ12 element of
the density matrix can be found, however, from (9) (by

setting the time-derivatives zero), incorporating also the
normalization condition

2∑
j=0

ρjj = 1. (27)

After a simple algebra, the result is

I =
2π
~
J2 1
π

~
2 (γ↓ + Γ↓)

[~2 (γ↓ + Γ↓)]2 + [ε2 − ε1]2

× γ↑Γ↓ − γ↓Γ↑
γ↓Γ↓ + γ↓Γ↑ + γ↑Γ↓ +X [γ↓ + Γ↓ + 2γ↑ + 2Γ↑]

6= 0.

(28)

Here

X =
2π
~
J2 1
π

~
2 (γ↓ + Γ↓)

[~2 (γ↓ + Γ↓)]2 + [ε2 − ε1]2
· (29)

Since we are obliged to stick to the required accuracy, we
should deal, using the formalism allowed, with just the
leading terms. Hence, we shall omit the terms ∝ X in the
denominator assuming that

X � γ↓Γ↓
γ↓ + Γ↓

· (30)

This assumption physically means limitation to a regime
of so small values of J that the intersite exciton transfer
still does not appreciably influence near-to-equilibrium ex-
citon site occupation probabilities. In (28) it implies that,
up to terms of higher than sixth order in g (still remember
that J ∝ g2),

I ≈ 2π
~
J2 1
π

~
2 (γ↓ + Γ↓)

[~2 (γ↓ + Γ↓)]2 + [ε2 − ε1]2

× γ↑Γ↓ − γ↓Γ↑
γ↓Γ↓ + γ↓Γ↑ + γ↑Γ↓

=
2π
~
J2 1
π

~
2 (γ↓ + Γ↓)

[~2 (γ↓ + Γ↓)]2 + [ε2 − ε1]2
[ρ11 − ρ22]. (31)

Interesting point is that the expression for the exciton flow
on the right hand side of (31) is correct even without as-
suming (30). This follows from (28) by taking into account
that from (9), we obtain the asymptotic-time populations

ρ11 =
γ↑Γ↓ +X(γ↑ + Γ↑)

γ↓Γ↓ + γ↓Γ↑ + γ↑Γ↓ +X(γ↓ + Γ↓ + 2γ↑ + 2Γ↑)

≈ e−βε1

Z
,

ρ22 =
γ↓Γ↑ +X(γ↑ + Γ↑)

γ↓Γ↓ + γ↓Γ↑ + γ↑Γ↓ +X(γ↓ + Γ↓ + 2γ↑ + 2Γ↑)

≈ e−βε2

Z
· (32)

In the last approximate expressions, we have again used
condition (30).
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Clearly, expression (31) for the exciton flow is, quite
surprisingly at the first sight, clearly nonzero. Already this
is remarkable as we have to realize again that the exciton
transfers energy and the transfer channel 1↔2 is the only
channel connecting our systems I and II and able, within
our model, to transfer thus energy between them. Before
getting into more physical details connected with this ob-
servation, let us also comment that expression (31)

• has a proper total balance structure with transitions
1→ 2 and 2→ 1 (contributing to (31) by terms ∝ ρ11

and ∝ ρ22, respectively), and
• is fully compatible with (in fact, it is exactly equal to)

the second-order Golden Rule of quantum mechanics
(J is the matrix element of the transfer part of the
Hamiltonian between states of the exciton at sites 1
and 2) with the fact incorporated that the energy con-
servation law should be, in a consistent way like above,
properly broadened owing to exciton decay processes.
For potential critics of the above approach, let us men-
tion that this form of the Golden Rule formula is fully
standard, was many times properly derived and always
found sound. Any doubts concerning our above ap-
proach would thus inevitably mean questioning of the
Golden Rule. For the special case of only one bath, it
is nothing but, e.g., formula (6.8.27) of [44].

The broadening in (31) means that the exciton transfer
is neither at level ε1 nor at level ε2(6= ε1) but generally
at arbitrary energy in tails of the two broadened exciton
levels. (Realize that the exciton is, as generally in nature
and as also anticipated in our model, just a finite life-time
quasiparticle.) This interpretation is clearly confirmed by
the fact that one can rewrite (31) also as

I =
2π
~
J2[ρ11 − ρ22]

×
∫ +∞

−∞

1
π

~
2γ↓

[~2γ↓]
2 + [ε− ε1]2

1
π

~
2Γ↓

[~2Γ↓]
2 + [ε− ε2]2

dε (33)

and the fact that any quasiparticle exponentially damped
with the decay rate γ, i.e. the survival probability
amplitude

〈a1(t)a†1〉 = exp(−iε1 t/~− γt/2), (34)

has its energy level (here ε1) broadened into a Lorentzian
with the energy half-with ~γ/2. See also a comment in
this respect above. The forms of (31) and (33) thus leave
only very limited space for speculations about validity of
our approach.

Our results (31) and (33) imply existence of the net ex-
citon flow in one direction but still not exactly anything
about energy (heat) flow. The point is that the net exci-
ton flow consists of forth and back flows which could take
place at different levels in the overlap region of the tails
of the broadened exciton levels on the energy axis. So let
us raise the question what is the proper formula for the
energy flow between the two subsystems. According to the
above quasiparticle interpretation, one would expect that

the energy flow is

Q =
2π
~
J2[ρ11 − ρ22]

×
∫ +∞

−∞

1
π

~
2γ↓

[~2γ↓]
2 + [ε− ε1]2

1
π

~
2Γ↓

[~2Γ↓]
2 + [ε− ε2]2

ε dε

=
2π
~
J2[ρ11 − ρ22]

~
2π

ε2γ↓ + ε1Γ↓

[~2 (γ↓ + Γ↓)]2 + [ε2 − ε1]2
·

(35)

The problem is with general justification of this formula.
In fact, one should define the energy flow Q between sys-
tems I and II in full generality as

Q = − d
dt
〈H̄I〉 (36)

or equivalently

Q =
d
dt
〈H̄II〉 · (37)

Here H̄I and H̄II should have the meaning of energies of
the subsystems I and II, such, that H̄I + H̄II = H (in
order to have (36) compatible with (37)). (Attempts to
define Q via energy contents of just baths I and II finally
yield, in view of finite heat capacity of our finite exciton
system and in the stationary situation, the same result.)
Because J must be assumed nonzero, these evidently can-
not be the Hamiltonians HI and HII introduced in (1). Re-
ally, making this or any other trivial identification of H̄I

and H̄II leads to hardly interpretable results. The physi-
cal reason for that is that nonzero values of J cause effects
like J-dependent renormalization of the exciton coupling
to the bath. Its exact form is unknown so that one can
ignore it only when the corresponding coupling constants
are negligibly small (when there is practically nothing to
be renormalized). That is why, for very small gκ (i.e. neg-
ligible γ↓), one can define the energy flow properly and
reliably by (36), identifying (in this particular case) H̄I

with HI. Then, after completely the same type of alge-
bra as above, (36) reduces to the above formula (35) with
negligible γ↓. In the opposite limiting case, when Gκ gets
very small (i.e. with negligible Γ↓), (37) also reduces to the
above formula (35), this time with negligible Γ↓, provided
we identify H̄II with HII.

So summarizing:

• Suggested interpolation formula for the energy flow
(35) can thus be properly justified in at least the
two above mentioned limiting cases. Then it definitely
yields generally nonzero values of the energy flow be-
tween our subsystems when ε1 6= ε2 and still T1 = T2

(equal initial temperatures of the two baths) or even
T1 6= T2, always in the direction from the system with
higher near-to-local-equilibrium exciton population to
that one with the lower population. Exception is when
T1ε2 = T2ε1 when the site populations P1 ≡ ρ11 and
P2 ≡ ρ22 would become equal.
• Formula for the exciton flow (31), or its equivalent

form (33), can be, in the above way and in contrast to
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(35), properly justified for all the values of the param-
eters involved. It always, for ε1 6= ε2 and T1 = T2 (or
T1 6= T2 but T1ε2 6= T2ε1), yields nonzero exciton flow
between the subsystems, again in the direction from
the system with higher (to that one with the lower)
near-to-local-equilibrium population Pj of the corre-
sponding exciton level. As the excitons bear energy,
this clearly explains why (35) could imply nonzero
mean energy flow as obtained above.

In particular, assume now that, e.g., ε2 > ε1. Assume
also that T2 > T1 but so that still T2 < T1ε2/ε1 ap-
plies. Then clearly long-time (near-to-local-equilibrium)
site-occupation probability ρ11 is still greater than that of
site 2, i.e. ρ22. This means that Q > 0 implying that our
spontaneous net energy flow goes in the direction from
site 1 to site 2, i.e. against temperature step. This conclu-
sion is of highest importance.

5 How long can such flows survive

One should always warn the reader that scaling methods
apply to arbitrarily long but still finite rescaled times. In
this sense see the book by Davies [39] and the mathe-
matical form of his final statements. Thus, as usual, the
formalism used here can be applied to the stationary sit-
uation obtained, after some initial transient period fol-
lowing establishing the contact between our subsystems I
and II, when difference of stationary exciton site popula-
tions begins to cause the nonzero flows as above. On the
other hand, one cannot say, on grounds of the scaling for-
malism for general relaxing systems only, what happens
afterwards.

Fortunately, physical arguments help appreciably in
our specific case. The point is that in contrast to most of
the relaxation problems solved so far, we have two baths
with initially different temperatures that are, after their
thermodynamic limit (as performed above), already infi-
nite. Thus, their heat contents becomes thus also infinite
and relative changes of their heat contents caused by the
finite heat flow between them are consequently, after any
finite time interval, definitely zero. We cannot say what is
the state of the baths in such a stationary situation with
nonzero flows – our formalism projecting off the baths does
not allow that. Anyway, we definitely know that, e.g., av-
erage energy per one bath mode (whose number grows, in
the thermodynamic limit, to infinity) thus remains time-
independent, keeping bath-I and bath-II temperatures (or
whatever else replacing these notions) constant and, for
initially T1 6= T2, permanently different. So, fully surpris-
ingly from the point of view of standard relaxation prob-
lems but necessarily as dictated by the existence of two
infinite baths in our situation, our flows should survive
forever. Hence, the question ’what happens afterwards’ is,
in our specific model, likely meaningless.

In practice with macroscopic but finite bodies, how-
ever, the situation is different. The flows may survive
for just a finite time but finally, they necessarily disap-
pear. What is then the form of the density matrix of

the complex ‘system+baths’ remains uncertain. Definitely,
however, the reduced density matrix of the system only
cannot be canonical. As a general formalism of the equi-
librium statistical mechanics shows, it becomes canonical
just in the zeroth order in the system-bath interaction.
One should notice that in this order, the energy broad-
ening disappears, i.e. the physical mechanism making, at
finite times, the above persistent flows possible disappears,
too. That would mean to return to standard physics.

6 Towards the second law of thermodynamics

There are several formulations of the second law. The
form by Clausius from 1865 involves entropy that was
not discussed here. Existence of entropy is, however, in
fact consequence of three main formulations of the second
law, that one by Thomson (1849), Clausius (1850), and
Carathéodory (1909) (for connections to entropy see [9] or
standard textbooks on axiomatic thermodynamics). The
statements are (cited according to [9]):

Thomson (as Lord Kelvin of Largs since 1892) [45]: No
process is possible, the sole result of which is that a
body is cooled and work is done.

Clausius [46]: No process is possible the sole result of
which is that the heat is transferred from a body to
a hotter one.

Carathéodory [47]: In any neighbourhood of any state
there are states that cannot be reached from it by an
adiabatic process.

The words ‘sole’ imply in particular that

• in the Thomson formulation, the process should be
cyclic, without any compensation (additional heat
transfer to another and cooler body). A (thought) ma-
chine working in such a style is often called ‘perpetuum
mobile of the second kind’;
• in the Clausius formulation, the process is not aided

from outside.

Significance of this law and consequences of its poten-
tial violation were perhaps best described in the Introduc-
tion of [9]. For 150 years, nobody really questioned this
statement based on uncountable number of observations
from our everyday life. One should add and stress there-
fore that our above system governed by quantum mechan-
ics and comprising macroscopic baths is macroscopic, i.e.
it should obey the Clausius (and not only this) formulation
of the second law provided that the quantum mechanics
and thermodynamics are always, including the quantum-
and at least the macro-world, compatible. However, the
opposite is true: The specific interaction between our two
macroscopic baths mediated by our microscopic exciton
system implies existence of the persistent and spontaneous
energy and heat flows. Really transferred heat can easily
become macroscopic as it is proportional to the time in-
terval used. Hence, owing to specific but standard features
of our microscopic exciton system, the above reported
nonzero values of Q going against the temperature step
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explicitly contradict the Clausius formulation of the sec-
ond law of the macroscopic thermodynamics.

Sometimes, absolutistic statements in favour of the
unconditional validity the second law in the macroworld
stemming from our everyday experience appear (“...No
exception to the second law of thermodynamics has ever
been found – not even a tiny one...” [48]). Let us men-
tion, however, that in the last time, genuine experimen-
tal challenges to this law start to appear [20,22,17,13,19].
Also theoretical challenges exist – see the Introduction and
the conclusions above. The situation is even more serious
as the mechanism reported here is based on just a sim-
ple diffusion and its (here again derived) characteristics
that have been, in general systems, experimentally veri-
fied many times before. One should also mention here the
‘pawl and ratchet’ systems originally suggested by Feyn-
man [23] which are also often cited in connection with the
second law. These systems, however, so far fail in practi-
cal attempts to violate the second law [24], in full agree-
ment with the Feynman [23] theoretical analysis. On the
contrary, behaviour of the above model as obtained from
the rigorous quantum theory of open systems without any
uncontrollable step does, as argued above, contradict the
second law. As compared to other theoretical challenges –
see, e.g., [11,8] and papers cited above or therein – the
present model is, on the other hand, perhaps the simplest
one. Worth mentioning is also that the above criteria for
the energy flow against the temperature step may easily
be compatible with, e.g., even room or higher tempera-
tures. In the infinite temperature (i.e. in the classical)
limit, however, the effect disappears.

7 Towards the zeroth law of thermodynamics

In order to be specific, let us state what this law (so of-
ten, especially in the mechanical context, understood as
trivial) says: If system A is in equilibrium with systems B
and C then B is in equilibrium with C (see, e.g., [49]). It
helps to introduce thermodynamic temperature, chemical
potential etc. Though universal validity of this law has
already been questioned (as far as its form for equality of
chemical potential of one sort of species in different phases
in equilibrium is concerned) – see [28] or in the implicit
form in [4], no special attention has so far been paid to
this fact. That is why we should address the question, in
connection with our model above, again.

Let us fix, in the above model, again the situation with
ε1 < ε2 and be T1 arbitrary positive. Then clearly site-
occupation probabilities equal at the second-bath temper-
ature T2 = T crit

2 ≡ T1ε2/ε1 > T1. Hence, upon establishing
then a contact between subsystems I and II by taking J
slightly (in the sense of (30)) nonzero, we get no energy or
exciton flow. Now, we can invoke standard thermodynamic
definition of what it means to say that two bodies in a con-
tact are in mutual equilibrium. The definition reads that
introducing arbitrary obstacles hindering flows between
the bodies does not change their thermodynamic state. In
this sense, this is exactly the situation we are now in: We

have two bodies in a contact where there are no flows be-
tween them. Hence, the thermodynamic state cannot be
violated by any obstacle setting these flows zero and not
influencing otherwise the state of the systems because the
flows are already zero. (Notice that also no other flows
but those of exciton or energy can exist in our model.)
Remind, on the other hand, that we have such a strange
thermodynamic equilibrium (in the above thermodynamic
sense) that temperatures of both the systems (those of
their baths) are different. This can clearly lead to other
contradictions with the standard thermodynamics as we
are now going to show.

Assume now that we have still another (third) exciton
level and still another (third) thermal bath attached to it.
In other words, we complement our Hamiltonian by terms

∆H = ε3a
†
3a3 +

∑
κ

~ωκb†3κb3κ

+
1√
N

∑
κ

hκ~ωκ
(
a3 + a†3

)(
b3κ + b†3κ

)
+

1√
N

∑
κ

Hκ~ωκ
(
a†2a3 + a†3a2

)(
b2κ + b3κ + b†2κ + b†3κ

)
+K

(
a†3a1 + a†1a3

)
. (38)

Clearly, the last two terms on the right hand side of (38)
provide interaction of subsystems II and III (this type of
the phonon-assisted interaction exists just in the diabatic
(non-rigid) basis [50]) and that of the subsystems III and I
(the latter interaction and the induced exciton transfer is
for simplicity assumed coherent, like that one of the sub-
systems I and II). Assume also that the exciton energy ε3
equals to that of the exciton in subsystem I, i.e. ε3 = ε1.
Next, we assume that again, the initial density matrix is
factorizable into a product of density matrices of all the
subsystems, so that there are no exciton-bath initial sta-
tistical correlations between any two of the three subsys-
tems. Finally, assume that the density matrices of all the
baths are initially canonical. Corresponding temperatures
are assumed as T3 = T2 > T1 (the last inequality being
assumed already above).

Let us for a while set J = K = 0. Then we have
our subsystem I fully separated and the dynamics goes
between subsystems II and III only. Exactly in the same
way as above (i.e. using the same type of scaling), we get
a closed set of equations for the matrix elements of the ex-
citon system. This time, however, the situation is simpler
as compared to that above. First, our coupling between
subsystems II and III is assumed as bath-assisted. In con-
nection with that, the set of equations for the site diagonal
as well as site off-diagonal matrix elements of the exciton
density matrix factorizes so that equations comprising the
diagonal elements contain only the diagonal elements (that
get separated from the set for the off-diagonal elements),
reducing in form to the Pauli master equations [51]. Prop-
erties of these equations are sufficiently known. So we shall
not repeat the calculations and refer the interested reader
to any elementary textbook of kinetic theory. The result
for the asymptotic exciton occupation probabilities reads
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as in the standard equilibrium statistical thermodynam-
ics, i.e.

ρ22 =
exp(−β2ε2)

1 + exp(−β2ε2) + exp(−β2ε1)
,

ρ33 =
exp(−β2ε1)

1 + exp(−β2ε2) + exp(−β2ε1)
, β2 =

1
kBT2

· (39)

Let us stress the following points:

• Values (39) properly reproduce, within our approxi-
mation (omission of multi-exciton states, i.e. with er-
rors ∝ exp(−β2(ε2 + ε1))), standard equilibrium sta-
tistical mean exciton numbers at sites 2 and 3, i.e.
1/[exp(β2ε2)+1] and 1/[exp(β2ε1)+1] (see a comment
above concerning appearance of these Fermi-Dirac dis-
tributions for excitons). In fact, as already argued
above, reintroducing the multiple-exciton states would
reproduce these values exactly. These Fermi-Dirac dis-
tributions are, on the other hand, proper mean number
of excitons at sites 2 and 3 for Hκ = 0, i.e. separated
subsystems II and III. Hence, establishing or cancelling
the above contact between the latter two subsystems
does not change the stationary (equilibrium) exciton
populations at the corresponding sites. The same may
be shown to apply to phonon populations in the cor-
responding baths.
• Assume now Hκ 6= 0. Owing to the incoherent (bath-

assisted) character of the above coupling between sub-
systems II and III, different populations of levels 2
and 3 (in accordance with standard statistical ther-
modynamics) do not contradict the fact that (exci-
ton mediated) flows between subsystems II and III re-
main in equilibrium exactly zero. This is due to the
fact that real 2 → 3 and 3 → 2 transition rates are
proportional to ρ22 × {1 + 1/[exp(β2~ωκ) − 1]} and
ρ33 × 1/[exp(β2~ωκ) − 1]}, respectively. Here, by the
energy conservation law, ~ωκ = ε2 − ε1 > 0. The
multiplicative factors at ρ22 and ρ33 are phonon sta-
tistical factors describing phonon-assisted induced as
well as spontaneous processes. So, the transfer rates
2 → 3 and 3 → 2 are in equilibrium exactly equal,
mutually cancelling their contribution to the exciton
as well as energy flow between subsystems II and III
(transferred energy is ε1 + ~ωκ = ε2). Here, for sim-
plicity, we have assumed (in accordance with assump-
tions underlying validity of the Pauli equations) that
|ε2− ε3|/~ ≡ |ε2− ε1|/~ is appreciably greater than the
sum of broadenings of levels 2 and 3, i.e. that the tran-
sitions are practically (exciton+phonon) energy con-
serving. These arguments are what underlies the de-
tailed balance conditions in the Pauli master equation
theories yielding the same conclusion.

These are the characteristics of the mutual equilibrium
(according to the above thermodynamic definition) state
of subsystems II and III, and also of the internal equi-
librium states of the isolated subsystems II and III taken
separately. With this states, let us now put Hκ = 0 (we

split subsystems II and III), keep J = 0 but put K 6= 0.
Let us repeat: We have the two subsystems (I and III)
with equal exciton energies ε1 = ε3 (this case may be
treated as a limit ε1 − ε3 → 0 in the above formulae),
initially in internally canonical states of both the subsys-
tems (and their baths), with the respective temperatures
T1 < T2 = T3. In accordance with what has been said
above about development of two such subsystems (pre-
viously subsystems I and II above) with their respective
baths, the asymptotic (stationary) populations of the ex-
citon levels 1 and 3 only slightly change upon establishing
contact between the subsystems as far as K remains suf-
ficiently small. Asymptotically, they read

ρ11 =
exp(−β1ε1)

1 + exp(−β1ε1) + exp(−β2ε1)
≈ exp(−β1ε1),

ρ33 =
exp(−β2ε1)

1 + exp(−β1ε1) + exp(−β2ε1)
≈ exp(−β2ε1),

β1 =
1

kBT1
·

(40)

Clearly, because β2 < β1, the populations ρ11 and ρ22 are
different. So, according to (31), (33) as well as (35), there
are flows between the subsystems I and III, i.e. we have
no equilibrium in the thermodynamic sense.

Thus, summarizing, we have subsystems I, II and III
which all have well defined temperatures. Upon establish-
ing just the above specific contact between I and II, the
systems stay, in the sense of the thermodynamic defini-
tion, in equilibrium. Similarly, upon establishing just the
above contact between subsystems II and III, the thermo-
dynamic equilibrium is not violated. All three systems (to-
gether with their baths) are macroscopic. Thus, the zeroth
law of thermodynamics should be, according to thermody-
namics, well applicable. It states that establishing contact
between subsystems I and III should preserve their mutual
equilibrium state. As seen above, however, the opposite is
true.

8 Conclusions

We have investigated one standard and rather trivial
model that allows rigorous treatment by methods of the
quantum theory of open systems. The obtained behaviour
contradicts what is prescribed by the second as well as
zeroth laws of thermodynamics. In connection with pre-
viously expressed doubts about universal validity of the
second law in specific situations, this extends challenges
to general compatibility of such two basic scientific dis-
ciplines as the thermodynamics and the quantum theory.
In other words, either thermodynamics or quantum the-
ory (or none of them) can apply as universal theories.
Definitely not both of them.
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